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ABSTRACT 

The generating functional for SU(2) quantum-chromodynamics 

has a representation as a classical ensemble of interacting instantons. 

It is shown that the instantons do not directly contribute to quark con- 

finement but only to quark mass renormalization. A perimeter type 

law for the phase factor of a large quark loop is derived for both dilute 

and dense ensemble configurations. The dilute ensemble is studied by 

an assumed cluster decomposition. The dense ensemble is studied by 

Monte Carlo computer simulation. 
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I. INTRODUCTION 

There is great interest in instanton solutions to gauge theories. i-8 

One of the major reasons for this interest is the hope that such solutions 

could lead to an understanding of the confinement mechanism in quantum- 

chromodynamics. Ever since the discovery of the instanton solution by 

Belavin, et al. 
1 

and the subsequent demonstration of how instanton 

solutions in three-dimensional QED lead to confinement, 
2 

there has been 

considerable hope and speculation that the same mechanism might also 

work for four-dimensional QCD. It is known that topological singularities 

like instantons contribute substantially to the dynamics of a system. One 

of the best examples is the role of vortices in the two-dimensional XY 

model. 9 The understanding of the dynamical effects of instantons is an 

important problem for &CD. 

In this paper, we study the interactions of quarks and instantons in 

the SU(2) gauge theory. In particular, we calculate the expectation value 

for a large quark loop in the presence of an ensemble of interacting 

instantons. We show that this factor decreases exponentially with the 

perimeter and not with the area of the loop. This is demonstrated for 

both dilute and dense configurations of instantons under the assumption 

that the long range instanton-instanton forces can be neglected. 

Instantons do not directly contribute to quark confinement but only to 

quark mass renormalization. 
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If one starts with the generating functional of SU(2) QCD in Euclidean 

space which is given by 

‘QCD = J aApg+ -% exp(-FM,+.+)) , (1.1) 

where S(A, $, +) is the SU(2) QCD action for gauge fields and fermions, 

one can show that the fermion degrees of freedom can be integrated out 

to obtain a sum over all possible closed quark paths: 
10 

‘&CD = paths c ‘X(c)’ ) c (1.2) 

where 

<x(c)> = J- BAr + tr P exp{ igfdx’A:$/exp (-S(A)} . (I.31 

S(A) is the QCD action for gauge fields only, ~~ are the usual Pauli 

matrices, and P represents a path ordering of the line intergral. 

But it has also been shown that the gauge field integration has a very 

rich vacuum and topological structure. 3-5 
One way to account for this 

structure 4 1s to sum over sectors of gauge field integration restricted to 

a specific winding number, 

‘yM =/gApexP {-S(A))= n$a/[gAp]n exp (-S(A)), (1.4) 

where 2 
n= L 

J- 

4 

64rr2 
dxc Fa Fa pv x0 p.v ho . 

We, of course, are choosing the 0 = 0 vacuum which is the relevant one 

for strong interactions (see however reference 11). A method to insure 
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restricting the gauge field integration is to perturb about classical 

solutions constrained to a set winding number such that the perturbation 

does not alter the restriction. 
3 

Within a particular winding number sector, 

one could sum over contributions from instanton-anti-instanton pairs. 

However, to avoid overcounting, one would have to truncate the pertur- 

bation series in the coupling constant g. We choose not to truncate per- 

turbation theory in the gauge field sector and thereby consider only 

expansions about instantons. However, including a summation over 

instanton-anti-instanton pairs for a dilute gas would not change the 

perimeter law for a large quark loop. 

Classical instanton solutions do exist 6,7 and have independent pa- 

rameters which crudely represent the positions xi sizes Xi and the 

isospin rotations Ri of n individual instantons. When quantizations 

are performed about these solutions, these independent parameters 

become quantum variables, known as collective coordinates, 12 
to be 

integrated over. In this manner, the generating functional becomes a 

classical grand canonical ensemble, 

m InI dX. 
Z 

YM = iTl d4xi $ dRiexp{[t(xi,Ai’Ri,g,ir)), 
(1.6) 

where p is the subtraction point. The symbol K is used by analogy with 

the grand canonical Hamiltonian of finite-temperature many-body 

theory. Although one isospin integration corresponds to a redundant 

overall isospin rotation, we leave it in for ease of notation. If we assume 
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that the effective coupling geff is small, then the contribution of a 

single quark loop can be approximated by the phase factor evaluated in 

the presence of the classical n instanton solution A a cl 
I* ~ 

m 

<x(c)>: <x(c)> 
cl = 1 J$ <x(c)> 

cl 

n=-m . n ’ 0.7) 

where 

lnl dk. 
<x(c)>;1 = ‘TT d4x. - 

/ i=l 1 A; 
dRi i trPexpligeff$dx4A~c1{ 1 (r.8) 

Even though it is unlikely that the effective coupling for a large quark loop 

is small, a calculation of the expectation value ix (c)> 
cl 

could reveal 

whether the instantons alone could cause confinement. If they could not 

confine quarks without an infinite number of gluon exchanges, then the 

confinement mechanism could be seen to come primarily from strong 

coupling or other field configurations rather than instantons. 

In this paper, we compute the expectation value of the classical 

phase factor in the presence of dilute and dense ensembles of instantons. 

The dilute gas is studied by the assumption of cluster decomposition. 

Unfortunately, cluster decomposition cannot be proven because the long 

range interactions between instantons (due to gluon exchange) are unknown. 

However, the short-distance interactions of instantons are better under- 

stood because the short distance behavior of the theory is known through 
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the renormalization group. Therefore, as long as long range interactions 

can be neglected we are able to study ensembles that are sufficiently dense 

such that their short-distance interactions dominate. Using Monte Carle 

techniques borrowed from the theory of liquids, 
13 

we calculate the expec- 

tation value ~ The result for both dense and dilute systems is that an 

ensemble of instantons gives rise to exponential decrease with the per- 

imeter -P and not with the area A. 

<x (CP c1 H P,A+m exp{-aPl . (1.9) 

This paper is organized as follows. Section II, describes how the 

renormalization group affects the instanton-instanton interaction. In 

Section III, we calculate the phase factor in the presence of one instanton. 

The dilute gas is studied in Section IV, and the dense ensemble is studied 

in Section V. Finally, we record some comments and conclusions in 

Section VI. 

II. THE INSTANTON-INSTANTON INTERACTION 

In this section, we study the interactions between instantons. Con- 

sider the n instanton potential energy function I?. Its behavior is 

clearly demonstrated by use of the renormalization group. First of all, 

we observe that K” is independent of the subtraction point F. Insisting 

that atit ap 
I xi, Ai, Ri, gbare fixed 

= 0 leads to the renormalization 

group equation 

1 Kn (xi. hi, Ri;g, II) = 0. (11.1) 
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If we now consider various resealings of the parameters we observe 

several obvious but important facts. First, the interaction of instantons 

at large distances is controlled by strong coupling. Second, the potential 

for large instantons is also controlled by strong coupling. However, the 

potential for small sizes is controlled by weak coupling. And finally, the 

short distance interaction of instantons is also controlled by weak coupling. 

In particular, if we consider the potential for two instantons. we have 

K2bl, x2> Ri, Ai% P) = K2(y> Ai> Rix. t4 , (11.2) 

where y = /xi-x2 1 so that 

+P(g)$ K’=‘J. 1 
implies 

K2(sy,hi,Ri;g,~) = K2 
A. 

y,$,R$ (i/s)>sy i 

r--/ _ 2 h2 /vz Ins 
s-o g2Ws) 

3 ’ 

where g (l/s) is the running coupling. So the instanton interaction at 

(11.3) 

(11.4) 

short distances is logarithmically repulsive. If one examines the I tHooft 

solution, 
6 

this result does not seem surprising. When an instanton has 

the same position as another instanton, the winding number changes 

abruptly by - 1, so if we restrict ourselves to a specific winding number 

sector, the short-distance repulsion is merely giving zero probability 

for instantons to have the same position. Note that these same 
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considerations for the n instanton potential would show that the ensemble 

could not collapse to a small region due to a short-distance repulsion. 

III. THE QUARK-INSTANTON INTERACTION 

In this section, we examine the quark-instanton interaction by cal- 

culating the phase factor 

x = $ tr P exp (III.1) 

In the presence of a single instanton, we will use both the Belavin, et al. 

instanton solution 
1 

and the ‘tHooft anti-instanton solution 6 which are 

respectively given by: 

A;(X) = $ o;@ 
2(x - x1)@ 

(X -X1)2 + A2 ’ 

and 

A;(X) = $ na 
2(x - q A2 

p(u (x -xl)2[(x - x1)2 2 +A I, 

where the imbedding matrix r) a 
4 

is defined by 

a 
n =-rl 

4 i@ 

a 
rl i4 = bai 

q; = Eaij (1, j = 1,2,x) . 

(111.2) 

(III.3) 

(111.4) 

Evaluation of x will require care at infinity for the Belavin solution and 

care at the origin for the ‘tHooft solution. 
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Let us parameter&e the quark path by xp(t) where to< ti T and 

define 

dx p (t) 
X(t)=gAtptXtt)! dt I (111.5) 

. . dtmT{;i(tt). ;. . e&tm). + (111’6) 

0 

where the T ordering is defined by placing the z(t) * ,’ with the lowest 

value of t to the right, then the one with the next lowest value and so on. 

Then 
X = i tr U(T) (III. 7) 

U(T) is in general difficult to calculate except numerically. However 

it can be calculated analytically in a few special cases which will indicate 

the general behavior. 

Consider an instanton a distance b away from a straight line path 

as shown in Fig. 1. Choosing xp(t) =(t,O,O,O) and x1 = (O.-b, t&O), we 

find that A1 = A2 = 0 and the problem is reduced to an Abelien one. We 

can do the integral directly and obtain 

U(t) = exp ia 

I [ 
J* tan-1 &I;;/ . 

(III. 8) 

For a Belavin solution, and 
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U(t) = exp -io 
-1 t’ 

- - 
b ,J& tan-’ 

(III. 9) 

for a ‘tHooft solution. If we close the contour at infinity, the ItHooft 

solution gives no additional contribution, but the Belavin solution gives 

an additional contribution of TT to the integral. Both solutions give the 

result 

x= cos[n(l --J=J=)] 1 

which has the behavior shown in Fig. 2. Likewise, the case of an 

instanton in the plane of a circular ring reduces to the Abelein case. 

Integration over the ring gives 

4R2A2 

(R2-X2 -9) 
2 

(111.10) 

(111.11) 

which is plotted in Fig. 3. Note that if we let the radius R go to infinity, 

keeping the shortest distance to the quark path b = 11 x1 I- R] and the 

size X fixed, we obtain Eq. (111.10). 

Finally, we calculate the phase factor for a circular quark loop and 

an instanton on the axis of the loop at arbitrary time as shown in Fig.4. 

First, we note that U(t) obeys a differential equation 

g u(t) = ; x(t). z U(t). (III.121 

Now we write U(t) in terms of Euler angles. 
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,i(G+4)/2 cos ei2 iei(+-4)/2 sin e,2 

U(t) = (III.1 3) 
ie-i($-m)/2 sin ei2 e-i(++4)i2 cos 6312 

and Eq. (111.12) becomes 

Al= do d4 z cos + f x sin 9 sin 9 

A2 = - $ sin + + 2 sin R cos 4 (111.14) 

A3 = 2 case+ $’ . 

Observe that Eqs. (111.14) are the equations of motion of a rigid body with 

angular velocity ri. 

Ifwelet Aa 
P 

be a ItH~ooft instanton we get 

Z(t) = [a sin (t + 6). - a cos (t + 6), c] s 

where 2 I 2Rh /x 
II 

a= 
(R2 + x;) (R2 + A2 + x;) 

6 = - tan-‘x:/x;l 

2R2 X2 cz- 
(R2 + xi) (R2 + A2 + xf) 

(111.15) 

(111.16) 

In this case, A’ is the same angular velocity as a torque-free rigid body. 

The solution is 
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0 = -I tan (- 5’ 

$I= -t (III.1 7) 

$=- at. sine 

We want U(0) to be the unit martix, so we rotate by -8 to obtain 

ei(x +4)/z 

i 

cos e/2 iei(+ - 4)/Z 

U(t)= 
ie-i(+- 4)/z sin R,2 ,-i(*+$)lZ 

:_;,j(-y;,2 -:::,:)a WI.18, 

and 
x = [cos $12 cos $12 - sin $12 sin $12 cos R/2] t = 2n 

= - C.S[TKx] (III.1 9) 

4R2X2 
$12 

(R2+ X2+x$2 ’ I ’ 

This behavior is plotted in Fig. 5. 

What can we now conclude about the general behavior of the quark- 

instanton interaction? From Figs. 2 and 3, we see that the greatest 

phase variation occurs when a quark path intersects an instanton and 

that the range of the variation is of the order of the size of the instanton. 

This is also evident in the large phase variation for instantons of the 

size of a loop within the same distance of the loop. However, instantons 

very much larger than the size of a loop do not cause large variation. 

Consequently, the phase factor for a general loop with a radius very 
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much larger than the instanton size is given approximately by Eq. (111.9) 

and Fig. 2. 

Instantons cause phase variation for a large quark loop only if they 

are within range of the quark path. The range is of the order of 

the instanton size. 

IV. THE DILUTE GAS 

In this section, we study the low density sector of the instanton 

ensemble. We use the dilute gas approximation and cluster decomposition. 

Unfortunately, we do not know the long range interaction of instantons 

because it is a strong coupling problem. In addition, there is no know- 

ledge of the contributions of large instantons. Consequently, to use the 

dilute gas approximation requires an unprovable assumption of cutoff of 

the long range and large size behavior. We show that this assumption 

leads directly to the perimeter law Eq. (1.9). 

First of all, let’s consider the clustering properties of the phase 

factor itself. The phase factor Xn does not have simple clustering prop- 

erties~ in the presence of n instantons except that as one instanton goes 

very far from the quark loop 

n-i 
Xn(xl...Xn' _j x (x ..-x 

IxnI- i 
n-l ). (IV.1) 

This is a property of all presently known solutions. However, the phase 

matrix U = U(T) which is related to X by Eq. (111.7), has more useful 

’ 
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cluster properties. Consider a large circular loop (with a radius R>> Xi) 

as shown in Fig. 4 and let $i = tan-f(xF/xf). Then the phase matrix 

in the presence of two instantons has the property. 

U2(x l’X2’ ,xp Q Ulxl) U1(x2’ , 
1 x2 -+02 

(IV.2) 

where Q represents ordering the U matrices with the smallest value of 

e to the right. Each U’(xi) is the phase matrix for the loop in the pres- 

ence of a single instanton. It is given by 

iZ.Gin 1- 

c I/ 
&J 

(IV.3) 

where 

bi = R - mr+ (x:)’ + (~4)~ 
1 1 ‘I2 > (IV.4) 

and iii is a unit vector determined by the embedding matrix a r) 
4 ’ 

the 

path, and the instanton position. Note that the @ ordering would be 

irrelevant if the instanton were very far from the loop, Likewise, for 

an n instanton phase matrix with one set (x l’..“Xm ) very far from 

another set (x 
m+l ,...,xn), then 

u”cx,. . .Xn) + @ Urn(x 
1 

. ..x m’ Un-mkm+i. . . x,’ > (IV.5) 

where again we must order the clusters with the lowest values of o to 

the right. To avoid difficulties later we will define the Q ordering by 

placing the matrix with the lowest average value of 6 to the right. To 
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use the cluster property Eq. (IV-S), we should, of course, prove that the 

corrections are such that the spatial integrations converge. However, 

at this time, the solution of n instantons with arbitrary isospin rotations 

is unknown. Since the isospin integrations certainly influence the cor- 

rection terms, we can only assume for now that they are small. 

Now me define the Euclidean space correlation functions 

J 
InI d+ 

bn(xl...xn) = T - 
i=* ‘,” 

dRi Un xi.. .X 
c 

/nj)ew {Kn(xi, Ai, Ri;g, 1.4). UV.6) 

If we define the following matrix amplitudes 

B,(V,R) = ‘;tr / d4xi 
1 

. ..x 
i=l V 

B. = 2 (IV.7) 

m 

B(V, R) = c B,W, W . 
n=-m 

where the integrations are over the Euclidean four-volume V, then we 

have 
<x (c’> 

cl 
= i tr B(v, R) . (IV.8) 

Now we make the crucial assumption of cluster decomposition. For a 

set of positions (x1’. . . , xm) very far from another set (xrn+f’. . . , xn) 

we assume that 

bn(xl.. .xn) - Q bm(xl. a .xm) bn-m(xm+l.. . xn) , (IV.9) 
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at such a rate so that the spatial integrations converge, i.e. , faster 

than (xm - ~m+~) 
-4 

. Now we can define the cluster decomposed matrix 

functions 

C’(x) = b’(x) 

C2(xl,x2) = b2(xl,x2) - @ &x1) &x2) 

(IV.10) 

C3(x1,x2,x3) = b3(x l’x2’x3’ - @ &x2) &x3) 

+ &Xl) C2(X2’X3) + &x2’ C2(x*,x3’ + &X3’ C2P 
1JX2’ 1 

and in general 

bn(xi.. . xn) = Q 

The cluster decomposed functions have the property 

cyxl.. . Xn) __r 
lxi-xjl-m O ) 

again at a fast enough rate such that the spatial integrations converge. 

Not if we integrate Eq. (IV.ll) over Euclidean space, divide by In]! and 

sum n from minus to plus infinity, we obtain 

d4xi C” (xl.. . xn) 1 
+ exp 

(IV.12) 
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Since the C”( i,.*., n) are zero if the instantons are either far from 

each other or far from the quark path, it is easy to see that 

in /v d4xi Cn(xl. ~ ‘xn) = cyn V - p, R + ~(1), 

and therefore, we can easily show that 

<X(C)> Cl Rz exp {-a RI , 

(IV.13) 

(IV.14) 

by bounding Eq. (IV.12) from above and below. 

V. THE DENSE ENSEMBLE 

In this section, we present a description of a high density ensemble 

calculation. The technique is the same Monte Carlo computer gener- 

ation scheme that is used in the theory of liquids. 13 
Our major assump- 

tion is that the density is sufficiently high so that the short-distance 

interaction is more important than the long-distance one. The result for 

the expectation value is the same perimeter law as found in the dilute gas 

case. 

The high density sector is very different from the low density one. 

First of all, there is a natural cutoff for the size integration. An increas- 

ing size is equivalent to decreasing the distance. This can be seen by 

examining the ‘tHooft solution for winding number two. Except for an 

overall scale factor, as the size of one instanton is increased, the 

solution looks more and more like a single instanton. The same field 

configuration can be also accomplished by decreasing the distance 
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between the instantons. But the short-distance repulsion limits the 

amount of distance that can be decreased. Therefore, the size is limited 

to how much it can be increased. This is in contrast to the zero density 

case where although there still is a short-distance repulsion, as the size 

is increased, the instantons can move away to maintain the same potential. 

In the non-zero density case, moving instantons must encounter other 

instantons and be repelled so that there is only a finite range of equipo- 

tential of the order of the mean free path divided by the size. This finite 

mean free path and the short-distance repulsion induces a size limitation. 

In addition, if the density is high enough it is a good approximation 

for liquids and solids to neglect the long range interaction and use only 

the short-distance one. Therefore, a high density ensemble allows us to 

make two qualitatively good approximations: limitation of the size and 

neglect of long range forces. Of course, these crude qualitative argu- 

ments should be confirmed by quanitative calculations. However, a 

complete quantization about a winding number two solution is at present 

beyond the scope of this paper. 

Now let’s consider a few simple arguments that clarify the computer 

calculation. It is easy to see that a rigid uniformly arrayed solid could 

not even give a perimeter law. Consider an element of path in an instanton 

solid as shown in Fig. 6. Let this path element’s contribution to the phase 

factor be 
.^ + 

‘0 0 Uo=ein , W.1) 
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then the total phase factor for a large loop made up of p such elements 

would be given by 

x = ; tr uz = 1; tr eiP 0 ii . z = cos p 0 , W.2) 

of course, such a rigid solid would only exist for effectively infinite 

densities. 

Now consider an ensemble of separated small size instantons which 

don’t interact, then the phase factor is given approximately by 

xn G Jj tr @ U’(xl) Ui(x,) . . . [ unknq I W.3) 

then the expectation value is given by 

<x Cc)> cl 
n d4xi U’$) . . . &,) 

InI 
cc- : tr Q n 

i=l 

= (V- dP)n 

n 
= v” 

c 
I- pdP 

n 1 

cm exp C-PdP) . 

W.4) 

where p = n/V is the fixed density. The behavior given by these crude 

approximations is born out by the computer calculations. 
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Now we describe in more detail the Monte Carlo generation. First 

of all, we assume that the density is high enough such that the effective 

instanton size is limited and that the effective potential can be approximated 

by only the short distance interaction as discussed in Section II. Remem- 

bering that the short distance two-body behavior is given by Eq. (11.4), we 

approximate the n-body potential by a sum of two-body potentials 

Kn(xi, Ai, Ri; g, p) E F 1 O(t- /xi-xjljln /xi-xj/. 
i<j 

07.5) 

Of course, using this form can only be justified for ensembles with mean 

free paths less than the cutoff length i/p. Because no arbitrarily isospin 

rotated solution is known, we ignore the isospin integrations and use the 

multi-instanton ‘tHooft solution which is given by 

A; (x) = - qa 8 In 
Pa @ (V.6) 

According to our previous arguments, we assume that the size integra- 

tions lead to a effective size X. 

To eliminate surface effects and better simulate an infinite ensemble 

with only a small number, periodic boundary conditions are chosen. The 

ensemble averaging is done as follows. Suppose we start with a config- 

uration J = {xx,}. Select one instanton at random and consider the config- 

uration L derived from J by moving the selected instanton from its 

position X~ to a new position xCl+rV where r is a randomly chosen vector 

inthe sphere /r/<d. If 
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E = exp {Kn(xL) - p(xJ)} , (V-7) 

is greater than or equal to a random number between zero and one, then 

the new configuration is L, otherwise it is J. The result is that within 

statistical errors and feasible computational time limits, the averaged 

phase factor does not decrease faster than an exponential perimeter. 

VI. CONCLUSIONS 

We have shown for both dilute and dense configurations of instantons 

that the expectation value for the phase factor of a large quark loop falls 

off exponentially with the perimeter. Therefore, unless instantons have 

non-trivial long range interactions they do not directly contribute to 

confinement but only to quark mass renormalization. We must conclude 

then that confinement must come from either more general field con- 

figurations or strong coupling. 

After the work reported in Section IV was completed, we received 

a preprint by Callan, Dashen, and Gross. 
14 

They come to the same 

conclusions for the dilute gas case. They also present an interesting 

field configuration which could be relevant to confinement. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

FIGURE CAPTIONS 

A straight line quark path with an instanton a 

distance b away. 

The phase factor dependence on b for the 

semicircular path of Fig. 1. 

The phase factor dependence for a circular path 

as a function of the distance from the center of the 

loop for an instanton in the plane of the loop and at 

the same time. 

A circular loop with an instanton on the axis. 

The phase factor dependence for Fig. 4. 

A path element in a hypercubical periodic array of 

instantons. 
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